Polynomial Quiz

Simple questions

1. Fill in the following table:

Expression	Number of Variables	Number of Terms	Type of Polynomial	Degree of Polynomial
$3 a^{4}-2 a^{3}-a$	1	3	trinomial	4
$2 m^{2}-3 m n-2 n$	2	3	trinomial	3
$x^{4} y^{3} z-x y z$	3	2	binomial	8
$a b c d$	4	1	monomial	4

2. An expression which contains variables is NOT considered a polynomial if the exponents on the variables are fractions or \qquad or \qquad .
3. Simplify the following expressions:
i) $4 y-3 x+2 z+3 y-x$
$7 y-4 x+2 z$ (combine like terms)
ii) $3(2 a-3 b)$
$6 a-9 b$ (distribution)
More complex questions
4. Simplify the following expressions:
i) $5 x-2(3-(2 x+5))+2 x$
$5 x-2(3-2 x-5)+2 x$ (distribute the negative in the innermost bracket) $5 x-2(-2-2 x)+2 x$ (combine like terms within the brackets) $5 x+4+4 x+2 x$ (distribute the negative in the bracket) $11 x+4$ (combine like terms)
ii) $(2 m-7)(3 m-4)$
$6 m^{2}-8 m-21 m+28$ (the FOIL method, but use any method) $6 m^{2}-29 m+28$ (combine like terms)
iii) $(a-b)^{2}$
(a-b)(a-b) (best to write it out so you don't forget to do all the distribution)
$a^{2}-2 a b+b^{2}$ (special product, but you can use any method)

Challenging questions

5. Simplify the following expressions:
_i) $(3 x-y)\left(2 x^{2}+2 x y+y^{2}\right)$
$6 x^{3}+6 x^{2} y+3 x y^{2}-2 x^{2} y-2 x y^{2}-y^{3}$ (Distribute the first term from the binomial and then the second term of the binomial, or whatever order works best for you)
$6 x^{3}+6 x^{2} y-2 x^{2} y+3 x y^{2}-2 x y^{2}-y^{3}$ (do this step of putting it in order if that helps)
$6 x^{3}+4 x^{2} y+x y^{2}-y^{3}$ (Combine like terms
ii) $(a-b)(a+b)+(a-2 b)(2 a+2 b)-a b$
$a^{2}-b^{2}+\left(2 a^{2}+2 a b-4 a b-4 b^{2}\right)-a b$ (special product and FOIL)
$a^{2}-b^{2}+2 a^{2}-2 a b-4 b^{2}-a b$ (Combine like terms in brackets)
$3 a^{2}-3 a b-5 b^{2}$ (Combine like terms in brackets)
iii) $(2 m+n)(m+n)(3 m+2 n)$
$(2 m+n)\left(3 m^{2}+2 m n+3 m n+2 n^{2}\right)$ (Multiply two binomials)
$(2 m+n)\left(3 m^{2}+5 m n+2 n^{2}\right)($ Combine like terms) $6 m^{3}+10 m^{2} n+4 m n^{2}+3 m^{2} n+5 m n^{2}+2 n^{3}$ (Distribute the binomial)
$6 m^{3}+13 m^{2} n+9 m n^{2}+2 n^{3}$ (Combine like terms)
OR
$\left(2 m^{2}+2 m n+m n+n^{2}\right)(3 m+2 n)$ (Multiply two binomials)
$\left(2 m^{2}+3 m n+n^{2}\right)(3 m+2 n)($ Combine like terms)
$6 m^{3}+4 m^{2} n+9 m^{2} n+6 m n^{2}+3 m n^{2}+2 n^{3}$ (Distribute the trinomial)
$6 m^{3}+13 m^{2} n+9 m n^{2}+2 n^{3}$ (Combine like terms)
Unfamiliar situation
6. What volume of recyclable sustainable packaging is needed to cushion this gift in its packing box?

Orb with sea image by Mitchell Gaiser on Unsplash, Brandable Box on Unsplash
The orb is $6 n$ in diameter and the box is $7 n+2 t$ wide and the same long and $7 n+3 t$ tall. (Measurements are $n=$ fingerwidth and $t=$ thumbwidth). Remember that the formula for volume of a rectangular prism is $l w h$ and the formula for a sphere is $\frac{4}{3} \pi r^{3}$.
Use 3.14 for mat the last point you can in your solution. Box - orb = packaging material
$(7 \mathrm{n}+2 \mathrm{t})(7 \mathrm{n}+2 \mathrm{t})(7 \mathrm{n}+3 \mathrm{t})-\frac{4}{3} \pi(3 n)^{3}$
$\left(49 n^{2}+28 n t+4 t^{2}\right)(7 n+3 t)-\frac{4}{3} \pi 27 n^{3}$
$\left(343 n^{3}+147 n^{2} t+196 n^{2} t+84 n t^{2}+28 n t^{2}+12 t^{3}\right)-36 \pi n^{3}$
$343 n^{3}+343 n^{2} t+112 n t^{2}+12 t^{3}-113.04 n^{3}$
$229.96 n^{3}+343 n^{2} t+112 n t^{2}+12 t^{3}$
Now you need to measure your finger and thumb to figure out the actual amount, not in a polynomial.

Deciding on your level.

- Your level coincides with whatever level you have everything correct.
- If you made a simple arithmetic error $(2 \cdot 3=5$ or $2+3=6$) occasionally, don't worry about it but be sure to check for those types of errors in the future
- If you made the same error 3 times, then that is a concern and you drop down a level
- If you did not reach into the challenging level, go back and practice some more with polynomials
- In the last question, if you forgot to use $3 n$ as the radius (half the diameter), your answer would be $343 n^{3}+343 n^{2} t+112 n t^{2}+12 t^{3}-904.32 n^{3}$ and therefore $-561.32 n^{3}+343 n^{2} t+112 n t^{2}+12 t^{3}$ which doesn't make sense as it is a negative overall amount.

