The Golden Ratio

Age 11 to 14
Challenge Level

The Golden Ratio and the human body.

This exercise is divided into 3 parts:
A. The golden ratio

Measure the following:
Distance from the ground to your belly button Distance from your belly button to the top of your head
Distance from the ground to your knees
Distances A, B and C
Length of your hand
Distance from your wrist to your elbow
Now calculate the following ratios:
Distance from the ground to your belly button / Distance from your belly button to the top of your head
Distance from the ground to your belly button /
Distance from the ground to your knees
Distance C / Distance B
Distance B / Distance A
Distance from your wrist to your elbow / Length of your hand

Write all your results on the following table:

Student name	Ratio 1	Ratio 2	Ratio 3	Ratio 4	Ratio 5
\ldots					
Average					

Can you see anything special about these ratios?
B. The fibonacci sequence

Now look at the following sequence of numbers:
1, 1, $2,3,5,8,13,21,34,55,89 \ldots$
The following number is the sum of the previous two. This is Fibonacci's sequence.
Now do the following ratios on a calculator and give answers in non-fraction numbers:
$1 / 2=$
$3 / 2=$
$5 / 3=$
$8 / 5=$
$13 / 8=$
21/13 =
34/21 =
55/34 =
89/55 =
As you go on and on dividing a number in the sequence by the previous number you get closer and closer to the number you discovered in the first part of the exercise, phi = $\phi=$ 1.6180339887498948482.
C. The golden rectangle

We can also draw a rectangle with the fibonacci number's ratio. From this rectangle we can then derive interesting shapes.

First colour in two 1×1 squares on a piece of squared paper:

Then draw a 2×2 square on top of this one:

Then draw a 3×3 square to the right of these:

Then draw a 5×5 square under these:

Then draw a 8×8 square to the left of these:

We could go on like this forever, making bigger and bigger rectangles in which the ratio of length/ width gets closer and closer to the Fibonacci number.

Let's try making a more interesting shape, going back to our first 1×1 squares and using a compass, place the compass tip on the top right hand corner of the right hand square and draw a semi circle like this:

Then place the compass tip on the bottom left corner of the 2×2 square and draw an arc like this:

Then place the compass tip on the left hand, top corner of the 3×3 square and do the same:

Do the same for the other three squares to obtain:

This shape is widely found in nature, can you find any other examples?

http://www.cam.ac.uk
NRICH is part of the family of activities in the Mille. All rights reserved. http://nrich.maths.org/terms

