Discovering Exponents

Write the answers to each of the exercises in the space provided. Your answer must be in the form of either a whole number or a fraction (NO DECIMALS). You are NOT allowed to use a calculator. Simply follow the pattern.
a) $2^{5}=32$
b) $3^{4}=$ \qquad
c) $4^{3}=$ \qquad

$$
2^{4}=16
$$

$$
3^{3}=
$$

\qquad
$4^{2}=$ \qquad

$$
2^{3}=
$$

$$
3^{2}=
$$

\qquad
$4^{1}=$ \qquad
$2^{2}=$ \qquad
$3^{1}=$ \qquad
$4^{0}=$ \qquad
$2^{1}=$ \qquad
$3^{0}=$ \qquad

$$
4^{-1}=
$$

$2^{0}=$ \qquad
$3^{-1}=$ \qquad
$4^{-2}=$ \qquad

$$
2^{-1}=
$$

$2^{-2}=$ \qquad
$3^{-2}=$ \qquad
$4^{-3}=$ \qquad
$2^{-3}=$ \qquad
$3^{-3}=$ \qquad
$4^{-4}=$ \qquad
$4^{-5}=$ \qquad
$2^{-4}=$ \qquad
$3^{-4}=$
$2^{-5}=$ \qquad

Conclusions:

Based on your results above, what conclusions can you draw about
a) the exponent 1 ?
b) the exponent 0 ?
c) negative exponents?

Write general rules for your conclusions, using x as your base and m as your exponent for the rule for negative exponents. The rules have been started for you below.
a) $x^{1}=$
b) $x^{0}=$
c) $x^{-m}=$

